Copied to
clipboard

G = C7×C232D4order 448 = 26·7

Direct product of C7 and C232D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C232D4, (C2×C28)⋊24D4, C233(C7×D4), (C22×C14)⋊5D4, (C22×D4)⋊1C14, C24.7(C2×C14), C14.90C22≀C2, C22.68(D4×C14), C14.40(C41D4), C2.C429C14, (C23×C14).4C22, C14.137(C4⋊D4), C23.75(C22×C14), (C22×C14).456C23, (C22×C28).400C22, (C2×C4)⋊2(C7×D4), (D4×C2×C14)⋊13C2, C2.6(C7×C4⋊D4), C2.3(C7×C41D4), (C2×C22⋊C4)⋊6C14, C2.4(C7×C22≀C2), (C14×C22⋊C4)⋊27C2, (C2×C14).608(C2×D4), (C22×C4).4(C2×C14), C22.35(C7×C4○D4), (C2×C14).216(C4○D4), (C7×C2.C42)⋊25C2, SmallGroup(448,800)

Series: Derived Chief Lower central Upper central

C1C23 — C7×C232D4
C1C2C22C23C22×C14C23×C14D4×C2×C14 — C7×C232D4
C1C23 — C7×C232D4
C1C22×C14 — C7×C232D4

Generators and relations for C7×C232D4
 G = < a,b,c,d,e,f | a7=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf=bc=cb, bd=db, ebe-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 634 in 322 conjugacy classes, 86 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C22×D4, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C232D4, C7×C22⋊C4, C22×C28, C22×C28, D4×C14, C23×C14, C7×C2.C42, C14×C22⋊C4, D4×C2×C14, C7×C232D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C4○D4, C2×C14, C22≀C2, C4⋊D4, C41D4, C7×D4, C22×C14, C232D4, D4×C14, C7×C4○D4, C7×C22≀C2, C7×C4⋊D4, C7×C41D4, C7×C232D4

Smallest permutation representation of C7×C232D4
On 224 points
Generators in S224
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 132)(2 133)(3 127)(4 128)(5 129)(6 130)(7 131)(8 185)(9 186)(10 187)(11 188)(12 189)(13 183)(14 184)(15 164)(16 165)(17 166)(18 167)(19 168)(20 162)(21 163)(22 171)(23 172)(24 173)(25 174)(26 175)(27 169)(28 170)(29 205)(30 206)(31 207)(32 208)(33 209)(34 210)(35 204)(36 156)(37 157)(38 158)(39 159)(40 160)(41 161)(42 155)(43 192)(44 193)(45 194)(46 195)(47 196)(48 190)(49 191)(50 151)(51 152)(52 153)(53 154)(54 148)(55 149)(56 150)(57 102)(58 103)(59 104)(60 105)(61 99)(62 100)(63 101)(64 138)(65 139)(66 140)(67 134)(68 135)(69 136)(70 137)(71 145)(72 146)(73 147)(74 141)(75 142)(76 143)(77 144)(78 123)(79 124)(80 125)(81 126)(82 120)(83 121)(84 122)(85 113)(86 114)(87 115)(88 116)(89 117)(90 118)(91 119)(92 110)(93 111)(94 112)(95 106)(96 107)(97 108)(98 109)(176 222)(177 223)(178 224)(179 218)(180 219)(181 220)(182 221)(197 214)(198 215)(199 216)(200 217)(201 211)(202 212)(203 213)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 57)(7 58)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 36)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 216)(23 217)(24 211)(25 212)(26 213)(27 214)(28 215)(29 223)(30 224)(31 218)(32 219)(33 220)(34 221)(35 222)(50 78)(51 79)(52 80)(53 81)(54 82)(55 83)(56 84)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 89)(72 90)(73 91)(74 85)(75 86)(76 87)(77 88)(99 127)(100 128)(101 129)(102 130)(103 131)(104 132)(105 133)(106 134)(107 135)(108 136)(109 137)(110 138)(111 139)(112 140)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(155 183)(156 184)(157 185)(158 186)(159 187)(160 188)(161 189)(162 190)(163 191)(164 192)(165 193)(166 194)(167 195)(168 196)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)
(1 78)(2 79)(3 80)(4 81)(5 82)(6 83)(7 84)(8 222)(9 223)(10 224)(11 218)(12 219)(13 220)(14 221)(15 24)(16 25)(17 26)(18 27)(19 28)(20 22)(21 23)(29 38)(30 39)(31 40)(32 41)(33 42)(34 36)(35 37)(43 211)(44 212)(45 213)(46 214)(47 215)(48 216)(49 217)(50 59)(51 60)(52 61)(53 62)(54 63)(55 57)(56 58)(64 73)(65 74)(66 75)(67 76)(68 77)(69 71)(70 72)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(91 92)(99 153)(100 154)(101 148)(102 149)(103 150)(104 151)(105 152)(106 115)(107 116)(108 117)(109 118)(110 119)(111 113)(112 114)(120 129)(121 130)(122 131)(123 132)(124 133)(125 127)(126 128)(134 143)(135 144)(136 145)(137 146)(138 147)(139 141)(140 142)(155 209)(156 210)(157 204)(158 205)(159 206)(160 207)(161 208)(162 171)(163 172)(164 173)(165 174)(166 175)(167 169)(168 170)(176 185)(177 186)(178 187)(179 188)(180 189)(181 183)(182 184)(190 199)(191 200)(192 201)(193 202)(194 203)(195 197)(196 198)
(1 188 76 199)(2 189 77 200)(3 183 71 201)(4 184 72 202)(5 185 73 203)(6 186 74 197)(7 187 75 198)(8 110 213 148)(9 111 214 149)(10 112 215 150)(11 106 216 151)(12 107 217 152)(13 108 211 153)(14 109 212 154)(15 127 33 145)(16 128 34 146)(17 129 35 147)(18 130 29 141)(19 131 30 142)(20 132 31 143)(21 133 32 144)(22 123 40 134)(23 124 41 135)(24 125 42 136)(25 126 36 137)(26 120 37 138)(27 121 38 139)(28 122 39 140)(43 99 220 117)(44 100 221 118)(45 101 222 119)(46 102 223 113)(47 103 224 114)(48 104 218 115)(49 105 219 116)(50 207 95 162)(51 208 96 163)(52 209 97 164)(53 210 98 165)(54 204 92 166)(55 205 93 167)(56 206 94 168)(57 158 85 169)(58 159 86 170)(59 160 87 171)(60 161 88 172)(61 155 89 173)(62 156 90 174)(63 157 91 175)(64 194 82 176)(65 195 83 177)(66 196 84 178)(67 190 78 179)(68 191 79 180)(69 192 80 181)(70 193 81 182)
(1 199)(2 200)(3 201)(4 202)(5 203)(6 197)(7 198)(8 119)(9 113)(10 114)(11 115)(12 116)(13 117)(14 118)(15 125)(16 126)(17 120)(18 121)(19 122)(20 123)(21 124)(22 132)(23 133)(24 127)(25 128)(26 129)(27 130)(28 131)(29 139)(30 140)(31 134)(32 135)(33 136)(34 137)(35 138)(36 146)(37 147)(38 141)(39 142)(40 143)(41 144)(42 145)(43 153)(44 154)(45 148)(46 149)(47 150)(48 151)(49 152)(50 162)(51 163)(52 164)(53 165)(54 166)(55 167)(56 168)(57 169)(58 170)(59 171)(60 172)(61 173)(62 174)(63 175)(64 176)(65 177)(66 178)(67 179)(68 180)(69 181)(70 182)(71 183)(72 184)(73 185)(74 186)(75 187)(76 188)(77 189)(78 190)(79 191)(80 192)(81 193)(82 194)(83 195)(84 196)(85 158)(86 159)(87 160)(88 161)(89 155)(90 156)(91 157)(92 204)(93 205)(94 206)(95 207)(96 208)(97 209)(98 210)(99 211)(100 212)(101 213)(102 214)(103 215)(104 216)(105 217)(106 218)(107 219)(108 220)(109 221)(110 222)(111 223)(112 224)

G:=sub<Sym(224)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,132)(2,133)(3,127)(4,128)(5,129)(6,130)(7,131)(8,185)(9,186)(10,187)(11,188)(12,189)(13,183)(14,184)(15,164)(16,165)(17,166)(18,167)(19,168)(20,162)(21,163)(22,171)(23,172)(24,173)(25,174)(26,175)(27,169)(28,170)(29,205)(30,206)(31,207)(32,208)(33,209)(34,210)(35,204)(36,156)(37,157)(38,158)(39,159)(40,160)(41,161)(42,155)(43,192)(44,193)(45,194)(46,195)(47,196)(48,190)(49,191)(50,151)(51,152)(52,153)(53,154)(54,148)(55,149)(56,150)(57,102)(58,103)(59,104)(60,105)(61,99)(62,100)(63,101)(64,138)(65,139)(66,140)(67,134)(68,135)(69,136)(70,137)(71,145)(72,146)(73,147)(74,141)(75,142)(76,143)(77,144)(78,123)(79,124)(80,125)(81,126)(82,120)(83,121)(84,122)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,110)(93,111)(94,112)(95,106)(96,107)(97,108)(98,109)(176,222)(177,223)(178,224)(179,218)(180,219)(181,220)(182,221)(197,214)(198,215)(199,216)(200,217)(201,211)(202,212)(203,213), (1,59)(2,60)(3,61)(4,62)(5,63)(6,57)(7,58)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,216)(23,217)(24,211)(25,212)(26,213)(27,214)(28,215)(29,223)(30,224)(31,218)(32,219)(33,220)(34,221)(35,222)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,89)(72,90)(73,91)(74,85)(75,86)(76,87)(77,88)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(155,183)(156,184)(157,185)(158,186)(159,187)(160,188)(161,189)(162,190)(163,191)(164,192)(165,193)(166,194)(167,195)(168,196)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210), (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,222)(9,223)(10,224)(11,218)(12,219)(13,220)(14,221)(15,24)(16,25)(17,26)(18,27)(19,28)(20,22)(21,23)(29,38)(30,39)(31,40)(32,41)(33,42)(34,36)(35,37)(43,211)(44,212)(45,213)(46,214)(47,215)(48,216)(49,217)(50,59)(51,60)(52,61)(53,62)(54,63)(55,57)(56,58)(64,73)(65,74)(66,75)(67,76)(68,77)(69,71)(70,72)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,92)(99,153)(100,154)(101,148)(102,149)(103,150)(104,151)(105,152)(106,115)(107,116)(108,117)(109,118)(110,119)(111,113)(112,114)(120,129)(121,130)(122,131)(123,132)(124,133)(125,127)(126,128)(134,143)(135,144)(136,145)(137,146)(138,147)(139,141)(140,142)(155,209)(156,210)(157,204)(158,205)(159,206)(160,207)(161,208)(162,171)(163,172)(164,173)(165,174)(166,175)(167,169)(168,170)(176,185)(177,186)(178,187)(179,188)(180,189)(181,183)(182,184)(190,199)(191,200)(192,201)(193,202)(194,203)(195,197)(196,198), (1,188,76,199)(2,189,77,200)(3,183,71,201)(4,184,72,202)(5,185,73,203)(6,186,74,197)(7,187,75,198)(8,110,213,148)(9,111,214,149)(10,112,215,150)(11,106,216,151)(12,107,217,152)(13,108,211,153)(14,109,212,154)(15,127,33,145)(16,128,34,146)(17,129,35,147)(18,130,29,141)(19,131,30,142)(20,132,31,143)(21,133,32,144)(22,123,40,134)(23,124,41,135)(24,125,42,136)(25,126,36,137)(26,120,37,138)(27,121,38,139)(28,122,39,140)(43,99,220,117)(44,100,221,118)(45,101,222,119)(46,102,223,113)(47,103,224,114)(48,104,218,115)(49,105,219,116)(50,207,95,162)(51,208,96,163)(52,209,97,164)(53,210,98,165)(54,204,92,166)(55,205,93,167)(56,206,94,168)(57,158,85,169)(58,159,86,170)(59,160,87,171)(60,161,88,172)(61,155,89,173)(62,156,90,174)(63,157,91,175)(64,194,82,176)(65,195,83,177)(66,196,84,178)(67,190,78,179)(68,191,79,180)(69,192,80,181)(70,193,81,182), (1,199)(2,200)(3,201)(4,202)(5,203)(6,197)(7,198)(8,119)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,125)(16,126)(17,120)(18,121)(19,122)(20,123)(21,124)(22,132)(23,133)(24,127)(25,128)(26,129)(27,130)(28,131)(29,139)(30,140)(31,134)(32,135)(33,136)(34,137)(35,138)(36,146)(37,147)(38,141)(39,142)(40,143)(41,144)(42,145)(43,153)(44,154)(45,148)(46,149)(47,150)(48,151)(49,152)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,158)(86,159)(87,160)(88,161)(89,155)(90,156)(91,157)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,132)(2,133)(3,127)(4,128)(5,129)(6,130)(7,131)(8,185)(9,186)(10,187)(11,188)(12,189)(13,183)(14,184)(15,164)(16,165)(17,166)(18,167)(19,168)(20,162)(21,163)(22,171)(23,172)(24,173)(25,174)(26,175)(27,169)(28,170)(29,205)(30,206)(31,207)(32,208)(33,209)(34,210)(35,204)(36,156)(37,157)(38,158)(39,159)(40,160)(41,161)(42,155)(43,192)(44,193)(45,194)(46,195)(47,196)(48,190)(49,191)(50,151)(51,152)(52,153)(53,154)(54,148)(55,149)(56,150)(57,102)(58,103)(59,104)(60,105)(61,99)(62,100)(63,101)(64,138)(65,139)(66,140)(67,134)(68,135)(69,136)(70,137)(71,145)(72,146)(73,147)(74,141)(75,142)(76,143)(77,144)(78,123)(79,124)(80,125)(81,126)(82,120)(83,121)(84,122)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,110)(93,111)(94,112)(95,106)(96,107)(97,108)(98,109)(176,222)(177,223)(178,224)(179,218)(180,219)(181,220)(182,221)(197,214)(198,215)(199,216)(200,217)(201,211)(202,212)(203,213), (1,59)(2,60)(3,61)(4,62)(5,63)(6,57)(7,58)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,216)(23,217)(24,211)(25,212)(26,213)(27,214)(28,215)(29,223)(30,224)(31,218)(32,219)(33,220)(34,221)(35,222)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,89)(72,90)(73,91)(74,85)(75,86)(76,87)(77,88)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(155,183)(156,184)(157,185)(158,186)(159,187)(160,188)(161,189)(162,190)(163,191)(164,192)(165,193)(166,194)(167,195)(168,196)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210), (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,222)(9,223)(10,224)(11,218)(12,219)(13,220)(14,221)(15,24)(16,25)(17,26)(18,27)(19,28)(20,22)(21,23)(29,38)(30,39)(31,40)(32,41)(33,42)(34,36)(35,37)(43,211)(44,212)(45,213)(46,214)(47,215)(48,216)(49,217)(50,59)(51,60)(52,61)(53,62)(54,63)(55,57)(56,58)(64,73)(65,74)(66,75)(67,76)(68,77)(69,71)(70,72)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,92)(99,153)(100,154)(101,148)(102,149)(103,150)(104,151)(105,152)(106,115)(107,116)(108,117)(109,118)(110,119)(111,113)(112,114)(120,129)(121,130)(122,131)(123,132)(124,133)(125,127)(126,128)(134,143)(135,144)(136,145)(137,146)(138,147)(139,141)(140,142)(155,209)(156,210)(157,204)(158,205)(159,206)(160,207)(161,208)(162,171)(163,172)(164,173)(165,174)(166,175)(167,169)(168,170)(176,185)(177,186)(178,187)(179,188)(180,189)(181,183)(182,184)(190,199)(191,200)(192,201)(193,202)(194,203)(195,197)(196,198), (1,188,76,199)(2,189,77,200)(3,183,71,201)(4,184,72,202)(5,185,73,203)(6,186,74,197)(7,187,75,198)(8,110,213,148)(9,111,214,149)(10,112,215,150)(11,106,216,151)(12,107,217,152)(13,108,211,153)(14,109,212,154)(15,127,33,145)(16,128,34,146)(17,129,35,147)(18,130,29,141)(19,131,30,142)(20,132,31,143)(21,133,32,144)(22,123,40,134)(23,124,41,135)(24,125,42,136)(25,126,36,137)(26,120,37,138)(27,121,38,139)(28,122,39,140)(43,99,220,117)(44,100,221,118)(45,101,222,119)(46,102,223,113)(47,103,224,114)(48,104,218,115)(49,105,219,116)(50,207,95,162)(51,208,96,163)(52,209,97,164)(53,210,98,165)(54,204,92,166)(55,205,93,167)(56,206,94,168)(57,158,85,169)(58,159,86,170)(59,160,87,171)(60,161,88,172)(61,155,89,173)(62,156,90,174)(63,157,91,175)(64,194,82,176)(65,195,83,177)(66,196,84,178)(67,190,78,179)(68,191,79,180)(69,192,80,181)(70,193,81,182), (1,199)(2,200)(3,201)(4,202)(5,203)(6,197)(7,198)(8,119)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,125)(16,126)(17,120)(18,121)(19,122)(20,123)(21,124)(22,132)(23,133)(24,127)(25,128)(26,129)(27,130)(28,131)(29,139)(30,140)(31,134)(32,135)(33,136)(34,137)(35,138)(36,146)(37,147)(38,141)(39,142)(40,143)(41,144)(42,145)(43,153)(44,154)(45,148)(46,149)(47,150)(48,151)(49,152)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,158)(86,159)(87,160)(88,161)(89,155)(90,156)(91,157)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,132),(2,133),(3,127),(4,128),(5,129),(6,130),(7,131),(8,185),(9,186),(10,187),(11,188),(12,189),(13,183),(14,184),(15,164),(16,165),(17,166),(18,167),(19,168),(20,162),(21,163),(22,171),(23,172),(24,173),(25,174),(26,175),(27,169),(28,170),(29,205),(30,206),(31,207),(32,208),(33,209),(34,210),(35,204),(36,156),(37,157),(38,158),(39,159),(40,160),(41,161),(42,155),(43,192),(44,193),(45,194),(46,195),(47,196),(48,190),(49,191),(50,151),(51,152),(52,153),(53,154),(54,148),(55,149),(56,150),(57,102),(58,103),(59,104),(60,105),(61,99),(62,100),(63,101),(64,138),(65,139),(66,140),(67,134),(68,135),(69,136),(70,137),(71,145),(72,146),(73,147),(74,141),(75,142),(76,143),(77,144),(78,123),(79,124),(80,125),(81,126),(82,120),(83,121),(84,122),(85,113),(86,114),(87,115),(88,116),(89,117),(90,118),(91,119),(92,110),(93,111),(94,112),(95,106),(96,107),(97,108),(98,109),(176,222),(177,223),(178,224),(179,218),(180,219),(181,220),(182,221),(197,214),(198,215),(199,216),(200,217),(201,211),(202,212),(203,213)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,57),(7,58),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,36),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,216),(23,217),(24,211),(25,212),(26,213),(27,214),(28,215),(29,223),(30,224),(31,218),(32,219),(33,220),(34,221),(35,222),(50,78),(51,79),(52,80),(53,81),(54,82),(55,83),(56,84),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,89),(72,90),(73,91),(74,85),(75,86),(76,87),(77,88),(99,127),(100,128),(101,129),(102,130),(103,131),(104,132),(105,133),(106,134),(107,135),(108,136),(109,137),(110,138),(111,139),(112,140),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(155,183),(156,184),(157,185),(158,186),(159,187),(160,188),(161,189),(162,190),(163,191),(164,192),(165,193),(166,194),(167,195),(168,196),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210)], [(1,78),(2,79),(3,80),(4,81),(5,82),(6,83),(7,84),(8,222),(9,223),(10,224),(11,218),(12,219),(13,220),(14,221),(15,24),(16,25),(17,26),(18,27),(19,28),(20,22),(21,23),(29,38),(30,39),(31,40),(32,41),(33,42),(34,36),(35,37),(43,211),(44,212),(45,213),(46,214),(47,215),(48,216),(49,217),(50,59),(51,60),(52,61),(53,62),(54,63),(55,57),(56,58),(64,73),(65,74),(66,75),(67,76),(68,77),(69,71),(70,72),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(91,92),(99,153),(100,154),(101,148),(102,149),(103,150),(104,151),(105,152),(106,115),(107,116),(108,117),(109,118),(110,119),(111,113),(112,114),(120,129),(121,130),(122,131),(123,132),(124,133),(125,127),(126,128),(134,143),(135,144),(136,145),(137,146),(138,147),(139,141),(140,142),(155,209),(156,210),(157,204),(158,205),(159,206),(160,207),(161,208),(162,171),(163,172),(164,173),(165,174),(166,175),(167,169),(168,170),(176,185),(177,186),(178,187),(179,188),(180,189),(181,183),(182,184),(190,199),(191,200),(192,201),(193,202),(194,203),(195,197),(196,198)], [(1,188,76,199),(2,189,77,200),(3,183,71,201),(4,184,72,202),(5,185,73,203),(6,186,74,197),(7,187,75,198),(8,110,213,148),(9,111,214,149),(10,112,215,150),(11,106,216,151),(12,107,217,152),(13,108,211,153),(14,109,212,154),(15,127,33,145),(16,128,34,146),(17,129,35,147),(18,130,29,141),(19,131,30,142),(20,132,31,143),(21,133,32,144),(22,123,40,134),(23,124,41,135),(24,125,42,136),(25,126,36,137),(26,120,37,138),(27,121,38,139),(28,122,39,140),(43,99,220,117),(44,100,221,118),(45,101,222,119),(46,102,223,113),(47,103,224,114),(48,104,218,115),(49,105,219,116),(50,207,95,162),(51,208,96,163),(52,209,97,164),(53,210,98,165),(54,204,92,166),(55,205,93,167),(56,206,94,168),(57,158,85,169),(58,159,86,170),(59,160,87,171),(60,161,88,172),(61,155,89,173),(62,156,90,174),(63,157,91,175),(64,194,82,176),(65,195,83,177),(66,196,84,178),(67,190,78,179),(68,191,79,180),(69,192,80,181),(70,193,81,182)], [(1,199),(2,200),(3,201),(4,202),(5,203),(6,197),(7,198),(8,119),(9,113),(10,114),(11,115),(12,116),(13,117),(14,118),(15,125),(16,126),(17,120),(18,121),(19,122),(20,123),(21,124),(22,132),(23,133),(24,127),(25,128),(26,129),(27,130),(28,131),(29,139),(30,140),(31,134),(32,135),(33,136),(34,137),(35,138),(36,146),(37,147),(38,141),(39,142),(40,143),(41,144),(42,145),(43,153),(44,154),(45,148),(46,149),(47,150),(48,151),(49,152),(50,162),(51,163),(52,164),(53,165),(54,166),(55,167),(56,168),(57,169),(58,170),(59,171),(60,172),(61,173),(62,174),(63,175),(64,176),(65,177),(66,178),(67,179),(68,180),(69,181),(70,182),(71,183),(72,184),(73,185),(74,186),(75,187),(76,188),(77,189),(78,190),(79,191),(80,192),(81,193),(82,194),(83,195),(84,196),(85,158),(86,159),(87,160),(88,161),(89,155),(90,156),(91,157),(92,204),(93,205),(94,206),(95,207),(96,208),(97,209),(98,210),(99,211),(100,212),(101,213),(102,214),(103,215),(104,216),(105,217),(106,218),(107,219),(108,220),(109,221),(110,222),(111,223),(112,224)]])

154 conjugacy classes

class 1 2A···2G2H···2M4A···4H7A···7F14A···14AP14AQ···14BZ28A···28AV
order12···22···24···47···714···1414···1428···28
size11···14···44···41···11···14···44···4

154 irreducible representations

dim11111111222222
type++++++
imageC1C2C2C2C7C14C14C14D4D4C4○D4C7×D4C7×D4C7×C4○D4
kernelC7×C232D4C7×C2.C42C14×C22⋊C4D4×C2×C14C232D4C2.C42C2×C22⋊C4C22×D4C2×C28C22×C14C2×C14C2×C4C23C22
# reps1133661818662363612

Matrix representation of C7×C232D4 in GL6(𝔽29)

2400000
0240000
0024000
0002400
000010
000001
,
0280000
2800000
000100
001000
0000128
0000028
,
2800000
0280000
001000
000100
0000280
0000028
,
2800000
0280000
0028000
0002800
000010
000001
,
0120000
1200000
0028000
000100
00002113
0000138
,
0120000
1700000
0028000
0002800
00002113
0000138

G:=sub<GL(6,GF(29))| [24,0,0,0,0,0,0,24,0,0,0,0,0,0,24,0,0,0,0,0,0,24,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,28,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,28,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,21,13,0,0,0,0,13,8],[0,17,0,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,21,13,0,0,0,0,13,8] >;

C7×C232D4 in GAP, Magma, Sage, TeX

C_7\times C_2^3\rtimes_2D_4
% in TeX

G:=Group("C7xC2^3:2D4");
// GroupNames label

G:=SmallGroup(448,800);
// by ID

G=gap.SmallGroup(448,800);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,813,2438,2403]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^7=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f=b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽